If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+76x-1320=0
a = 3; b = 76; c = -1320;
Δ = b2-4ac
Δ = 762-4·3·(-1320)
Δ = 21616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21616}=\sqrt{16*1351}=\sqrt{16}*\sqrt{1351}=4\sqrt{1351}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-4\sqrt{1351}}{2*3}=\frac{-76-4\sqrt{1351}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+4\sqrt{1351}}{2*3}=\frac{-76+4\sqrt{1351}}{6} $
| 5x+13=37−3x | | x+11=-2x+29 | | 3x-15=x3+ | | 2x.x=72 | | 2c-4=9c | | -x+22=2x+1 | | x+8=4x+23 | | x+2=3x+14 | | x+2=3x+13 | | x+5=-x+13 | | Y-4x^2=0 | | x-0.64x=0.36 | | 4x+16=x+40 | | 4x+13=x+40 | | 2x3=5x+19 | | 3x+6=-x+42 | | -3(6+12x)6(13x+27)=60 | | 7a-4+9a-11= | | 4x+21=x-9 | | x+1=-x-15 | | x8=2x+1 | | 5x18=x+50 | | -4(6+3)3(12x-7)=24 | | 4x+19=x+40 | | 2x+17=5x+38 | | -4(6+3x)3(12-7)=24 | | 2x17=5x+38 | | 3x2=7x-6 | | -3(2-x)3(15+4)=36 | | 4m/5+7/10=m | | 3(2-x)3(15+4)=36 | | x+15=-3x+39 |